Processor graphics clock что это

Processor Graphics Clock — что это такое в биосе?

Processor Graphics Clock — задает частоту встроенного графического ядра.

Используется для тех же целей что и Max CPU Graphics Ratio (ASUS), Adjust GT Ratio (MSI). Только в этой опции частота указывается в прямом смысле, не через множитель. По факту — некий разгон встройки.

  • Processor — процессор (CPU).
  • Graphics — графический.
  • Clock — примерно значит изменение частоты.

На заметку. Обычная видеокарта обозначается как GPU, встроенная — iGPU.

По умолчанию в опции выставлено Auto.

Опция например присутствует в плате Gigabyte GA-Z97X-Game Plus (1150 сокет, Intel).

Если встроенным видео пользоваться не собираетесь — лучше оставить значение по умолчанию.

На заметку. Современные процессоры AMD/Intel содержат графическое ядро, которое можно использовать для офисных задач. Простыми словами — на материнской плате есть видео-выходы для подключения монитора. Если в процессоре есть видеоядро, то выходы будут работать. Данное видеоядро является простой видеокартой, для игр — недостаточно. Встроенное видеоядро у Intel может называться например Intel HD Graphics 3000.

Processor Graphics Clock — лучше больше или меньше?

Данный параметр можно изменять, минимальное значение — 400 МГц, максимальное — 4000. Однако зависит от модели материнской платы.

Теоритически можно увеличивать частоту с минимальным шагом и проверкой стабильности системы, например при помощи теста производительности AIDA64. Однако учтите:

  1. Увеличивать нужно отталкиваясь от базовой. На всякий случай посмотрите на сайте Intel базовую частоту видеоядра именно вашего процессора. Модель проца можно узнать в окне Система (Панель управления) либо через утилиту CPU-Z.
  2. Повышение приведет к увеличению нагрева процессора. Все зависит от того, насколько вы ее поднимите.
  3. Повышение — не лучшая идея улучшить производительность встройки, которая предназначена исключительно для офисных задач. Чтобы играть — возьмите простую дешевую видеокарту, которая на порядок лучше будет.
  4. Повышение частоты > повышение температуры > ускоренная потеря свойств проводимости тепла термопасты под крышкой процессора. Я к тому что не стоит оно того. Без повышения можно играть в простые/старые. С повышением — также в простые/старые, возможно чуть графа будет лучше, не более. О нормальной графе GTA 5/ведьмака на встройке не мечтайте.

В самом крайнем случае, если очень хочется увеличить значение Processor Graphics Clock, поэкспериментировать — улучшите охлад проца. Поставьте еще один вентилятор. Тогда увеличивайте, хотя я все равно считаю — лишено смысла.

Заключение

  1. Processor Graphics Clock — задает частоту встроенного графического ядра в процах Intel/AMD.
  2. Не советую повышать частоту для улучшения производительности. Встройка — не для игр, а базовый уровень видеокарты для офисной работы ПК.

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Ковыряемся в БИОС от глюкобайта

Итак, так как делать мне сегодня было абсолютно нефиг, решил я тут пописать немного. (Пись-пись-пись ) В общем, решил я пояснить назначение некоторых функций раздела M.I.T. (Motherboard Intelligent Tweaker). Опытные оверы знают что там к чему, но новичкам, возможно и пригодится. За базу была взята плата Gigabyte GA-EX38-DS5. Скрины взяты с -DQ6 версии (фотоаппарата нету ) Но данная структура применима (да и мало в чем вообще отличается) для плат на наборах логики Х48, Р35, Р45 (там в сторону усложнения, правда).

Итак, первым у нас идет функция Roboost Graphic Booster. Назначение ее вытекает из ее же названия — повышение производительности видеокарты. Естественно, самым идиотским способом — повышением частоты PCI-E ну и еще там по мелочи (вот меня всегда убивало: что за бред, ведь в 99.99% случаев производительность видео упирается в свойства и характеристики кристалла и памяти, но определенно не в ПС самой шины. На кой пихать этот бесполезный хлам ). В общем, обчыному пользователю она не нужна, а оверклокеру и подавно — смело ставим на Стандарт или авто и не забиваем себе мозги.

Далее идет CPU Clock Ratio. Ну тут нужно быть уже полным «дубом» чтобы не понять назначение сей функиции — изменение множителя. Удобно, что множитель задается цифрой вручную. Однако, дробный множитель мы там выставить не сможем, он выставляется с помощью следующей функции (сие применимо только для 45-нм процессоров Yorkfield и Wolfdale).

Ну далее мы видим значение частоты процессора при выбранном множителе и частоте шины, в общем понятно

CPU Host Clock Control — функция, которая блокирует и разблокирует ручное управление частотой шины процессора, PCI-E. Овеклокерам обзятельно включать

CPU Host Frequency — сие дело жизненно необходимо для овера — оно позволяет выставить значение чатоты шины FSB процессора (глюкобайт опять задал бесконечно здоровый диапазон значений — бсегда это бесило )

PCI Express Frequency — оно и понятно, задает частоту шины PCI-E. При разгоне желательно (да какое там, «желательно», — обязательно! фиксировать в пределах 100-103 МГц (многие оверы предпочитают ставить на значении 101, якобы это добавляет стабильности. Однако это все зависит от самой платы. Некоторые, например, ставили и 107. )). В противном случае посыпятся жесткие диски (а в очень, очень редких случаях может сыпануться и видеокарта, если значение частоты будет слишком большое).

C.I.A. 2 — обыному пользователю, неискушенному в оверклокерскому деле, но желающему повысить быстродействие компьютера может пригодиться — данная фигня позволяет включить динамический рагон при наргузке процессора. Естественно, есть несколько пресетов, отличающихся степенью разгона. Нам оверам, она на (censoured) не нужна, поэтому отключаем ее. (к слову сказать она и без того кривая).

Perfomance Enchance — сия функция для ленивых оверов, которым лень подбирать минимальные значения таймингов и Perfomance Level, заставляя маму делать это самой. Однако я лично ни разу не пользовался ею, помня тот кошмар с выставлением таймингов, который был у плат от глюкобайта раньше, предпочитая выставлять все вручную.

System Memory Multiplier — выставление частоты памяти и значения FSB страпа (грубо выражаясь, страп — это такая дрянь, которая понижает ПСП памяти при преодолении определенной частоты фронтальной шины). Частоты памяти показывается рядом и вычисляется по формуле FSBxMultiplier. Значений мнеодителя и страпа много, поэтому можно тонко настроить производительность памяти.

DRAM Timing Selectable — отключение/включение ручного управления таймингами памяти.

Далее идет целый раздел настроек тамингов памяти. Весь я его описывать не буду, ибо каждые значения для разного комплекта модулей памяти свои. Однако внимательный читатель наверняка заметил отсутствие в списке очень важного параметра: Perfomance level, серьезно влияющего на ПСП. Не стоит негодовать и поливать грязью платы, просто инженеры Гигабайт решили замаскировать этот параметр под ничего не говорящей неискушенному позователю функцией Static tREAD Value. Хитро, правда?

Далее идет раздел управления параметрами тактового генератора — Clock Driving & Skew Control.

Сии «прричендалы» понадобятся Вам только в тонкой настройке системы после разгона, для повышения стабильности системы, да и то при существенном разгоне. В основном, их можно оставить в покое.

Далее идет раздел управления напряжением, с главным «выключателем» System Voltage Control, у которого есть два значения: ручное и Авто. На авто я настоятельно не рекомендую ставить значения напруг — при разгоне плата устанавливает их просто баснословными. лучше все вручную.

DDR2 Voltage Control — оно и дураку понятно — позволяет овысить напряжение на памяти. Инженеры Гигабайт даже подсветили значения, что они считают небезопасными, розовым и красным цветом.

PCI-E Voltage Control — то же самое, только напруги для PCI-E.

FSB Overvoltage control — повышение напряжения на фронтальную шину FSB, понадобится при больших значениях оной (как минимум, за 400-420)

(G) MCH OverVoltage Control — добавление напруги на северный мост. Нужно для достижений больших значений FSB и частоты памяти.
ВНИМАНИЕ! Настоятельно советую (владельцам плат на на базе Х38/Х48 в особенности) поменять термоинтерфейс северника! Ибо то, что глюкобайтовци туда нацепили — это издевательство над здравым смыслом.
К слову, не советую владельцам плат на наборе логики Х38/Х48 особо увлекаться — мосты и без того раскалются а тут еще дополнительная напруга.

СPU Voltage Control — позволяет повышать/понижать напряжение на процессоре.

Loadline Calibration — эта весчь позволяет избежать процседания напряжения на процессоре при нагрузке. Теоретически. Фактически она реализовна у Гигабайта настолько отвратительно, что при даже включенной функции просадки достигают 0.05-0.06 В!! В случае двуядерных процессоров жить еще можно, но когда речь идет о четырехьядерных. Хоть намыливай веревку и вешайся. Ужас!

Ранее господа от глюкобайта любили применять так называемую «защиту от дурака», которая скрывала бы функции разгона в БИОСе, при этом же распихивали все функции куда только можно. Сейчас, как видите, все сосредоточено в одном разделе, но и при этом господа инженеры не удержались от искушения. С помощью комбинации клавиш Ctrl+F1, нажатой в основном окне БИОС, в разделе M.I.T. открываются еще две функции: CPU GTLREF1 Voltage control и CPU GTLREF2 Voltage Control. Я долго не мог понять для чего они нужны, и тем более зачем их нужно было скрывать, пока не понял, что они позволяют более тонку управлять напругой, подаваемой на процессор. Дело в том, что шаг подаваемой напруги на процессор не постоянный — он постепенно увеличвается со значением напряжения достигая значения 0.05-0.1 В при большbх значениях VCore. Поэтому для более тонкого управления напругой используются сии функции.

Читать еще:  Что значит гибернация на ноутбуке

Ну, в общем-то и все. Надеюсь кому-то этот маразм старца, что я написал, да и поможет.

Как разогнать видеокарту

В продолжение темы о разгоне процессоров поговорим о том, как разогнать видеокарту. Зачем это делать? Причина всё та же: возможность угнаться за растущими требованиями 3D-приложений и игр без затрат на покупку более производительных устройств.

Кроме этого я расскажу о подготовке разгону, о том, каких результатов можно достичь, как проводят тестирование видеокарты на стабильность и почему некоторые из них не удается разогнать как следует, несмотря на все усилия.

[NEW] Рейтинги F1 за 2018 год:
SSD, Smart TV приставки, игровые видеокарты, процессоры для ПК, МФУ, антивирусы, роутеры, усилители Wi-Fi, смартфоны до 10000 рублей

А стоит ли овчинка выделки?

Прежде чем начинать подготовку к разгону, которая порой сопровождается тратой денег на улучшенную систему охлаждения и более мощный блок питания (как и процессор, разогнанный видеочип выделяет больше тепла и потребляет больше энергии), стоит оценить возможности своей карточки.

Наибольшим разгонным потенциалом обладают оверклокерские серии видеокарт, вроде ASUS Matrix, Gigabyte Xtreme Gaming и т. п. Они способны увеличить производительность на 40-50% и выше. Следом идут карточки средней ценовой категории. Возможности некоторых их них искусственно занижены производителем для поддержания продаж дорогостоящих топовых моделей (те и другие нередко делают на основе чипов одинаковой скорости). Их скрытый потенциал составляет 20-35%.

Хуже всего разгоняются флагманские видеокарты, поскольку из них и так выжат максимум, и бюджетные (офисные) – они и вовсе не предназначены для оверклокинга. Даже относительно быстрый чип, установленный на дешевую карту, будет тормозиться слабыми или некачественными компонентами печатной платы, низкой разрядностью шины видеопамяти (группы линий связи между видеопроцессором и памятью), типом самой памяти и другими ограничениями архитектуры печатной платы. Максимум, на что способна эта категория видеокарт – прирост скорости на 5-15%.

Если ваша бюджетная карточка не в состоянии преодолеть некий условный минимум, можете поднять производительность видеоподсистемы ПК, задействовав технологии SLI/Crossfire (при условии поддержки). То есть установить в компьютер еще одну подобную карту и «заставить» их работать вместе. Впрочем, также могут поступить и владельцы флагманов.

Внимание! Не пытайтесь разгонять видео на ноутбуках! Мобильные видеочипы очень не любят перегрева. Иначе вместо того чтобы наслаждаться приростом FPS в любимой игре, вам придется нести «железного друга» в сервис на дорогостоящий ремонт.

Итак, вы убедились, что ваша видеокарта пригодна для оверклока, обеспечили ей хорошее охлаждение и удостоверились в достаточной мощности блока питания (как это сделать, написано в статье об оверклокинге процессоров). Осталось еще 3 шага:

  • Обновить BIOS материнской платы до последней версии (у десктопных видеокарточек есть и собственный BIOS, но в абсолютном большинстве случаев трогать его не нужно).
  • Установить последнюю стабильную версию видеодрайвера и DirectX. Кстати, один из методов оверклока предусматривает повышение частот графического ядра и видеопамяти через настройки драйвера или его параметры в реестре. Однако удобнее это делать с помощью утилит, чем мы и будем заниматься далее.
  • Протестировать карту в неразогнанном состоянии для оценки производительности и стабильности работы при повышенной нагрузке. На этом я остановлюсь подробнее.

3DMark

Эталонным средством бенчмарка – сравнительной оценки производительности графики, опытные оверклокеры считают пакеты 3DMark от компании Futuremark. Это наборы синтетических тестов, каждый из которых нагружает тот или иной структурный блок видеоподсистемы. Всего в приложении 6 тестов, состоящих из отдельных подтестов, – 2 физических (Physics и Combined) и 4 графических. В первых подтестах программа загружает преимущественно процессор, во вторых – видеокарту.

3DMark выпускается в бесплатном и платных вариантах. Бесплатный – «Basic Edition», включает в себя те же тесты, что и платные, но не позволяет менять их параметры. Платный «Advanced Edition» ($24.95) открывает доступ к изменению параметров и позволяет запускать подтесты по отдельности, а самый полный и дорогой – «Professional» ($995), дает возможность, ко всему прочему, сравнивать качество отрисовки (рендеринга) отдельных кадров.

Версия пакета подбирается в зависимости от версии DirectX, установленной на компьютере. Последняя на сегодняшний день – 3DMark 11, поддерживает DirectX 11 и 12.

Процесс тестирования следует контролировать визуально. Появление на экране различных артефактов – ряби, «снега», выпадения текстур, а также подергивания и мерцания картинки указывает на перегрев графического процессора (ГП) или памяти, а в некоторых случаях – на их неисправность. Зависания, перезагрузки синие экраны смерти бывают следствием ошибок видеодрайвера, проблем по питанию, перегрева или, опять же, неисправности видеокарты.

Итоги сравнительных тестов бесплатной версии 3DMark отображаются в браузере на сайте Futuremark, а не в самой программе. Если вас не смущает это условие, она вполне подойдет вам для сравнения производительности графики перед разгоном и после.

Запустив 3DMark 11 Basic Edition, выберите один из двух вариантов тестов – «Benchmark tests only» (только бенчмарк) или «Full 3DMark 11 Experience» (полный набор), и нажмите «Run 3DMark 11».

Во время демонстрации тестового ролика в углу экрана отображается температура графического процессора. Если она быстро достигает 85-90 градусов, система охлаждения работает неэффективно.

Другие инструменты тестирования видеокарт

В процессе разгона необходимо контролировать стабильность работы видео в реальных условиях – в играх и 3D-приложениях, которые вы используете, а также в условиях стресса – при искусственной максимальной нагрузке.

Для проведения стресс-тестов используют утилиты FurMark (опция «Stability Test») или OCCT (опция «GPU 3D»). Последняя тестирует не только ГП, но и видеопамять, а также автоматически фиксирует артефакты.

Настройки теста «GPU 3D» показаны на скриншоте:

В ходе проверки следите за температурой ГП. Подъем выше 90-105 градусов указывает на переразгон (если вы уже приступили к нему) или на недостаток охлаждения.

Внимание! Максимально допустимая температура ГП NVIDIA составляет 90-105 градусов, AMD такие данные не публикует, но в среднем их критический уровень на 5-10 градусов ниже.

Неразогнанная карточка не должна при стрессовой нагрузке разогреваться до предела. Иначе у нее не останется запаса на рост температуры после оверклока.

Когда и как запускать тесты

До начала разгона проведите бенчмарк-тест (для фиксации исходной оценки производительности видео) и часовой стрессовый, чтобы проверить стабильность его работы при максимальной загрузке.

После каждого шага повышения частот достаточно запускать стресс-тест или игру на 5-10 минут, отслеживая прирост температуры ГП. Если всё идет нормально, а нагрев не достигает верхнего порога, можете продолжать.

После разгона еще раз сделайте бенчмарк и заключительную проверку на стабильность в реальный условиях – например, запустите на несколько часов демо-версию любимой 3D-игры. Полезно погонять и стрессовые тесты для контроля температуры.

Разгоняемся!

А теперь переходим к основному этапу нашей задачи – непосредственно к разгону. В отличие от оверклокинга ЦП, где нужные параметры обычно сразу выставляют в BIOS, видеокарточки разгоняют с помощью утилит. И лишь самые опытные (и безбашенные) оверклокеры затем переносят полученные данные в видеоБИОС. Но я не советую вам следовать их примеру: это рискованно, во-первых, потерей гарантии, а во-вторых, если переразогнанная карта вдруг откажется стартовать, чтобы вернуть изначальные параметры видеоБИОС, придется его выпаивать и перепрошивать на программаторе.

Разгон видеокарт представляет собой насильственное повышение тактовой частоты ГП (ядра, шейдерного блока) и видеопамяти относительно их исходного уровня.

Утилит для разгона достаточно много. Для NVIDIA это:

  • NVIDIA System Tools (ранее называлась nTune).
  • NVIDIAInspector.
  • NvClock (только для Linux и FreeBSD).
  • EVGA Precision X.
  • AMD GPU Clock Tool.
  • MSI Afterburner.
  • ATITool (поддерживает в основном ГП, выпущенные до 2007 года).
  • ATITrayTools (тоже поддерживает в основном старые карты).

Кроме них существуют и другие утилиты от производителей видеокарт и сторонних разработчиков, поддерживающие видеочипы разных типов. К последним относятся известная и несколько устаревшая RivaTuner и PowerStrip.

Для разгона карточки GeForce GTX 650 я воспользуюсь утилитой EVGA Precision X, созданной компанией EVGA на основе технологий RivaTuner. Она содержит массу опций для тонкой настройки карт NVIDIA, но мне потребуется лишь часть из того, что мы видим на главном экране.

Итак, в центре показаны текущие (исходные) параметры карточки:

  • GPUClock – тактовая частота графического процессора.
  • GPUTemp – соответственно, температура ГП.
  • Voltage – напряжение питания ядра ГП.
Читать еще:  Чем открыть TIFF формат многостраничный

Эти же данные отражены на шкале.

Ниже находятся ползунки:

  • PowerTarget – предел энергопотребления графического процессора (можно установить 100% и ниже). Оптимальное значение – максимум.
  • GPUTempTarget – верхний порог температуры GPU – задаем в пределах 90-105 градусов.
  • GPUClockOffset – смещение частоты ядра ГП относительно базовой.
  • MemClockOffset – смещение частоты памяти относительно базовой.

Слева находится ползунок управления скоростью вентиляторов системы охлаждения GPU – Fan Speed. Справа – ползунок регулировки напряжения питания GPU – Voltage.

Я начну с того, что увеличу на 50% скорость вращения вентиляторов – передвину вверх слайдер «Fan Speed» и нажму «Apply». Это улучшит охлаждение ГП.

Следом небольшими шагами – по 10-15% от базового уровня, я подниму частоты ядра GPU (кстати, вместе с ним ускоряется шейдерный блок) и памяти. Это делается перемещением ползунков в правую сторону или вводом значений с клавиатуры. Снова нажму «Apply» и проконтролирую изменение температуры.

Далее я слегка увеличу напряжение питания GPU, выбрав возле ползунка «Voltage» опцию «Overvoltage» и переместив его вверх. Шаг прироста в моем примере составил 25 mV. Снова сохраню настройку нажатием «Apply» и запущу тест стабильности.

Когда результат разгона меня удовлетворит, я сохраню полученные настройки в профиль, щелкнув по кнопке с цифрой внизу окна. Всего в EVGA Precision X можно создать 10 таких профилей, например, для каждой игры.

Чтобы сбросить настройки на умолчания, достаточно нажать кнопку «Default», а если программа перестала отвечать – просто закрыть ее или перезагрузить компьютер.

Разгон видеокарты с помощью EVGA Precision X и других подобных ей утилит непостоянный. Он включается только тогда, когда программа запущена и в нее загружен один из профилей. Чтобы графика работала на повышенных частотах по умолчанию, настройки, как я говорил, переносят в BIOS карточки, но мы так делать не будем. Ибо повышения FPS можно добиться и без риска испортить дорогостоящее железо.

Автор еще рекомендует:

  • Как настроить бесплатные каналы на Smart TV
  • Очистка памяти на Android: проверенные способы
  • Калибровка аккумулятора ноутбука
  • Что такое UEFI и чем он лучше BIOS?
  • Как делать бекапы Windows 10 на автомате и зачем это нужно?
  • Как ускорить загрузку Windows 10
  • Если тормозит видео при просмотре онлайн

    Удачных вам экспериментов, и не забудьте поделиться результатами своих рекордов с нами!

    CPU frequency — что это? Определение, характеристика, инструкция по разгону и настройке процессора

    Вероятно, многие пользователи, копаясь в БИОСе своего любимого компьютера, наталкивались на такую надпись — CPU Frequency. Что это значит? Можно ли изменять этот параметр? Что будет, если проставить там совсем другие цифры? Мы попытаемся ответить на этот вопрос простым и понятным языком. Однако сначала нужно разобраться с самим понятием и только потом пробовать что-то менять в настройках БИОСа компьютера.

    Что такое CPU Frequency?

    Итак, что такое CPU Frequency в БИОСе? Этот параметр контролирует частоту шины памяти, которая соединяет процессор с оперативной памятью. Изменение этого параметра способно увеличить или уменьшить тактовую частоту самого процессора. Но использовать эту опцию требуется с сугубой осторожностью. Хоть шаг изменения частоты и составляет всего 1 мегагерц. Для того чтобы узнать, какую частоту поддерживает процессор без риска перегреться (если нет хорошей системы охлаждения) нужно будет изменять максимальную частоту путем проб и ошибок, ибо в технической документации такой информации нет.

    Если в процессе повышения рабочей частоты в БИОСе появилось CPU Frequency Warning (табличка с кучей английского текста), то манипуляции следует прекратить. Данное сообщение говорит о том, что процессор работает крайне нестабильно. Также там есть рекомендация применить предыдущие настройки, так как именно в том режиме процессор работал наиболее стабильно. Однако не стоит забывать, что не стоит увлекаться изменением параметра CPU Frequency. Значение в настройках указано оптимальное. А постоянная работа процессора в ускоренном режиме может резко сократить срок его службы.

    Что такое Dynamic CPU Frequency Mode?

    Некоторые пользователи наблюдали в БИОСе такую опцию, однако мало кто понимал ее значение. На самом деле это превосходная функция, отвечающая за стабильную работу процессора и оперативной памяти. Так что такое Dynamic CPU Frequency Mode в БИОСе? Это режим работы, при котором частота работы шины памяти (и частота процессора) динамически изменяется в зависимости от сложности решаемых задач. То есть, если компонентам нужна высокая производительность, то частота повышается автоматически, что дает существенный прирост мощности на аппаратном уровне. Такой вариант намного лучше, чем вручную пытаться выставить максимальную частоту. Так можно не опасаться перегрева. К тому же частота повышается только при необходимости, что продлевает срок службы центрального процессора и оперативной памяти устройства. А это в любом случае предпочтительнее того варианта, чем если бы процессор работал мощно, но недолго.

    Определение NB Frequency

    Есть в БИОСе и такая штука, как CPU NB Frequency. Что это такое? Параметр NB отвечает за рабочую частоту контроллера памяти. Чем она выше, тем быстрее работает память. Но проблема в том, что постоянная работа на повышенных частотах быстро приводит к износу контроллера. И это нехорошо. Многие профессионалы, конечно, советуют выставлять этот параметр на максимум, мол, «я сто раз так делал, ничего не будет». Но здесь вопрос здравого смысла и логики, а не того, кто, сколько раз и как это делал. Повышенные частоты в любом случае снижают жизненный цикл контроллера. Это непреложные основы физики. Так что к утверждениям «гуру» стоит относиться с известной долей скептицизма. Если вы хотите, чтобы ваш компьютер проработал долго, то не играйтесь с частотами. Так будет лучше. И не стоит выше положенных пределов изменять значение CPU Frequency. Что это снижает срок службы отдельных компонентов — понятно. Но повышенны частоты могут привести и к мгновенному перегреву и выходу из строя процессора. Оно вам надо?

    Некоторые правила разгона процессора

    Итак, вы все-таки решили поэкспериментировать с параметром CPU Frequency. Что это очень опасно уже известно. Но если пользователя это не останавливает, то стоит дать несколько рекомендаций по разгону процессора. Во-первых, никогда и ни за что не выставляйте сразу максимальный параметр частоты. Это может привести к мгновенному выходу из строя оборудования. Частоту нужно добавлять по одному значению, по порядку. Во-вторых, не стоит ожидать огромного прироста производительности. Некоторые товарищи после такого разгона не видят никакой разницы в производительности. И действительно, существенно поднять частоты все равно не получится. Так зачем без нужды мучить процессор? В-третьих, перед таким разгоном желательно обзавестись хорошей системой охлаждения. Дело в том, что при таком разгоне повышение частоты достигается путем увеличения напряжения на том или ином компоненте, что приводит к очень сильному нагреву. Поэтому без хорошего кулера (и не одного) компьютер будет работать быстро, но недолго.

    Некоторые правила разгона контроллера памяти

    С этим компонентом нужно быть вдвойне осторожным. Он гораздо уязвимее центрального процессора. И это не шутки. Если переборщить с частотой, то контроллер тут же накроется. Увеличивать рабочую частоту шины памяти и контроллера без крайней нужды не рекомендуется. Прироста производительности это даст немного, но поставит под угрозу весь компьютер. Ведь от перегрева может сгореть контроллер, который, в свою очередь, затронет саму шину и материнскую плату. В итоге ремонт может вылиться в довольно приличную сумму. И уж особенно не стоит заниматься таким делом в ноутбуках. В корпусе лэптопа и без того нет места для нормального циркулирования воздуха (и один несчастный вентилятор здесь не поможет). А если еще увеличить напряжение того или иного компонента, то он сгорит быстрее, чем вы включите ноутбук. Не стоит так рисковать. Если центральный процессор еще как-то можно разгонять таким способом (с сугубой осторожностью), то контроллер памяти лучше вовсе не трогать. Он не обладает такой крутой защитой, как процессор. Да и кулер от него далеко.

    Положительные отзывы тех, кто уже разогнал ЦП

    Однако в Сети полно тех, кто уже менял значение CPU Frequency. Что это был полезный опыт, никто и не отрицает. Но сколько человек добились успеха? Стоит сразу сказать, что отрицательных комментариев намного больше. У большинства ЦП просто не выдержали таких нагрузок. Тем не менее нашлись и те, кто считает разгон чуть ли не достижением. Однако они отмечают, что никогда не пытались сразу заставить работать процессор на максимальных частотах. Разгон производился постепенно. Также многие установили себе намного более мощные кулеры, что тоже сыграло положительную роль. Как ни странно, пользователи отмечают, что прирост производительности оказался ощутимым. Вероятно, им просто повезло. Однако у всех компьютер и по сей день работает стабильно. Без всяких проблем.

    Читать еще:  Что лучше WebRip или HDRip

    Отрицательные комментарии насчет разгона

    Однако большинство товарищей не вняли рекомендациям и попытались сразу выставить максимальную частоту. За это и поплатились. Также пользователи не смогли понять, для чего нужен апгрейд системы охлаждения при таком разгоне. В итоге их компьютеры проработали недолго, всего пару дней. В общем, разгонять процессор путем повышения рабочей частоты и напряжения весьма опасно. Не стоит таким заниматься неподготовленным людям. Результаты могут быть весьма печальными, а ремонт испорченного компьютера выльется в довольно большую сумму. Не стоит так рисковать.

    Заключение

    Итак, мы разобрали термин CPU Frequency. Что это, уже понятно. Также надо запомнить, что ни в коем случае не стоит менять это значение, если вы точно не знаете, как это нужно делать. Пусть лучше компьютер работает медленнее, но зато стабильнее. Так будет лучше в плане надежности. Да и срок службы процессора не снизится.

    Описание названий напряжений на материнских платах.

    Описание названий напряжений на материнских платах.

    Даже базовые материнские платы предоставляют несколько производных величин помимо основного напряжения, а в моделях класса high-end этих значений несметное количество. Порой даже опытным энтузиастам разгона трудно понять значение того или иного параметра. Мы постараемся объяснить все эти значения напряжений на понятном языке.

    Первыми в данном вопросе путаницу вносят производители материнских плат. Производители CPU и наборов микросхем тоже дают официальные названия всех напряжений, каждый производитель материнских плат, по непонятным причинам, присваивает им свои названия. В мануалах к платам производитель обычно не объясняет значение того или иного названия. Сначала рассмотрим, какие названия напряжений производители CPU дают своим продуктам.

    Процессоры производства Intel используют следующие напряжения (официальные названия):

    VCC. Основное напряжение CPU, которое неофициально может называться, как Vcore. Обычно, когда говорят “напряжение центрального процессора”, то имеют в виду данную величину. Опция, которая управляет данным напряжением на материнских платах, может называться “CPU Voltage”, “CPU Core”, и т.д.

    VTT. Напряжение, подаваемое на интегрированный контроллер памяти (для CPU, где есть этот компонент), на шину QPI (также, если таковая имеется в процессоре), на шину FSB (для CPU на данной архитектуре), на кэш памяти L3 (если присутствует), на шину контроля температуры (PECI, Platform Environmental Control Interface, если данная особенность присутствует в CPU), а также на другие схемы, в зависимости от модели и семейства CPU. Важно понять, что на процессорах AMD “VTT” обозначается другое напряжение, а VTT на процессорах Intel — это эквивалент VDDNB на процессорах AMD. Данное напряжение изменяться посредством опций “CPU VTT”, “CPU FSB”, “IMC Voltage” и “QPI/VTT Voltage”.

    VCCPLL. Напряжение, используемое в CPU, для синхронизации внутренних множителей (PLL, Фазовая автоматическая подстройка частоты). Это напряжение может быть изменено с помощью “CPU PLL Voltage”.

    VAXG. Напряжение, подаваемое на видеоконтроллер, интегрированный в CPU. Доступно на Pentium G6950, Core i3 5xxx и Core i5 6xx процессоры. Эта опция может называться “Graphics Core”, “GFX Voltage”, “IGP Voltage”, “IGD Voltage” и “VAXG Voltage”.

    CPU clock voltage. Некоторые материнские платы позволяют Вам менять напряжение базовой частоты CPU. Это можно делать через опции, называемые “CPU Clock Driving Control” or “CPU Amplitude Control”.

    Процессоры Intel. Напряжения, относящиеся к памяти. В то время, как у всех процессоров производства AMD есть встроенный контроллер памяти, то у процессоров Intel, эта особенность присутствует только у более новых моделей (Core i3, Core i5 и Core i7). Поэтому установка напряжений, относящихся к памяти, может быть произведена через настройки CPU или северного моста в составе набора микросхем (MCH, Memory Controller Hub), в зависимости от Вашей платформы. По этой причине напряжения и были разнесены на две группы.

    На шине памяти может присутствовать три различных вида напряжений:

    VDDQ. Сигнальное напряжение на шине памяти. JEDEC (организация, стандартизирующая память) называет эту величину напряжением SSTL (Stub Series Termination Logic). Это распространенная величина напряжения памяти, и она может скрываться за следующими названиями: “DIMM Voltage”, “DIMM Voltage Control”, “DRAM Voltage”, “DRAM Bus Voltage”, “Memory Over-Voltage”, “VDIMM Select”, “Memory Voltage” и т.д. Значение по умолчанию для этой линии 1.8 в для памяти DDR2 (SSTL_1.8) или 1.5 в для DDR3 (SSTL_1.5).

    Termination voltage. Напряжение, подаваемое на логические схемы в чипах памяти. По умолчанию данное напряжение устанавливается, как половина значения напряжения

    VDDQ/SSTL (основное напряжение на памяти). Эта опция может быть обозначена как “Termination Voltage” or “DRAM Termination”. Обратите внимание, что для процессоров AMD это напряжение называется VTT, а в случае с процессорами Intel, VTT — это вторичное напряжение процессора (см. предыдущую страницу).

    Reference voltage. Референсное напряжение, которое определяет уровень напряжения на контроллере памяти и модулях памяти. При определенном значении Reference voltage напряжения на шине памяти ниже определяются как “0”, а выше этого значения, как “1”. По умолчанию значение Reference voltage составляет половину напряжения SSTL (коэффициент 0.500x), но некоторые материнские платы позволяют Вам изменять это отношение, обычно посредством опций “DDR_VREF_CA_A”, “DRAM Ctrl Ref Voltage” и т.п. “CA”, “Ctrl” and “Address” относятся к линиям управления шины памяти (официальное название JEDEC для этого напряжения — VREFCA). “DA” and “Data” относятся к линиям данных шины памяти (официальное название JEDEC для этого напряжения — VREFDQ). Эти опции настраиваются при помощи установки коэффициента. Например, значение “0.395x” означает, что референсное напряжение будет равно 0.395 от величины напряжения SSTL. Обычно, материнские платы на платформе Intel, позволяют Вам управлять этими напряжениями раздельно для каждого канала памяти. Таким образом, опция “DDR_VREF_CA_A” определяет референсное напряжение для канала A, а “DDR_VREF_CA_B” тоже самое для канала B.

    Процессоры Intel. Напряжения, относящиеся к набору микросхем. Опции, связанные с набором микросхем, включают все напряжения, которые не были описаны на предыдущей странице:

    North bridge voltage. Это напряжение, которое подается на северный мост в составе набора микросхем системной платы. Отметим, что Intel называют северный мост, как MCH (Memory Controller Hub, на материнских платах для процессоров без интегрированного контроллера памяти), IOH (I/O Hub, на материнских платах, под CPU со встроенным контроллером памяти. Реализация набора микросхем в двух чипах) или PCH (Platform Controller Hub, на материнских платах, где CPU также имеет интегрированный контроллер памяти, но набор микросхем реализован в виде одного чипа). Таким образом, название данной опции может немного изменяться в зависимости от платформы. В случае наборов микросхем PCH существует два отдельных напряжения, VccVcore (обычно обозначается в настройках материнской платы как PCH 1.05 V или PCH PLL Voltage и является основным напряжением чипа), а также напряжение VccVRM (такие опции, как PCH 1.8 V или PCH PLL Voltage регулируют напряжение, подаваемое на внутренние множители чипа).

    South bridge voltage. Напряжение, подаваемое на чип южного моста. Intel называют чип южный моста — ICH (I/O Controller Hub). Название опции, отвечающей за установку данного напряжения, может быть “SB Voltage” and “ICH Voltage”.

    PCI Express voltage. Если Вы хотите изменить напряжение PCI Express, то нужно будет сначала определить, каким образом в Вашей системе управляются слоты и линии PCI Express. Например, некоторые CPU от Intel, могут управлять одной x16 или двумя x8 PCI Express линиями для подключения для видеокарт, а низкоскоростными PCI Express управляет набор микросхем (PCH). На некоторых других платформах управление слотами PCI Express для видеокарт осуществляется северным мостом (MCH или IOH), в то время как низкоскоростными PCI Express, управляет чип южного моста (ICH). Напряжение, используемое на линиях PCI Express, обычно, регулируется аппаратно, поэтому оно автоматически изменяется при изменении напряжений CPU, северного (PCH/MCH) или южное моста, в зависимости от того, где реализовано управление линиями PCI Express. В некоторых наборах микросхем (например, Intel X58) есть возможность устанавливать напряжения для линий PCI Express. На материнских платах, основанных на таких чипсетах, Вы найдете специальные опции для установки напряжения PCI Express. Например, “IOHPCIE Voltage” изменяет напряжение линий PCI Express, которым управляет северный мост материнской платы (IOH). А при помощи такой опции, как “ICHPCIE Voltage” можно устанавливать напряжение линий ICHPCIE Voltage, которыми управляет южный мост материнской платы (ICH).

    PCI Express clock voltage. Некоторые материнские платы позволяют Вам устанавливать напряжение элементов, отвечающих за частоту шины PCI Express. Данный параметр может называться “PCI-E Clock Driving Control” или “PCI Express Amplitude Control”.

  • Ссылка на основную публикацию
    Adblock
    detector